# **Unmet Needs in Lung Cancer**

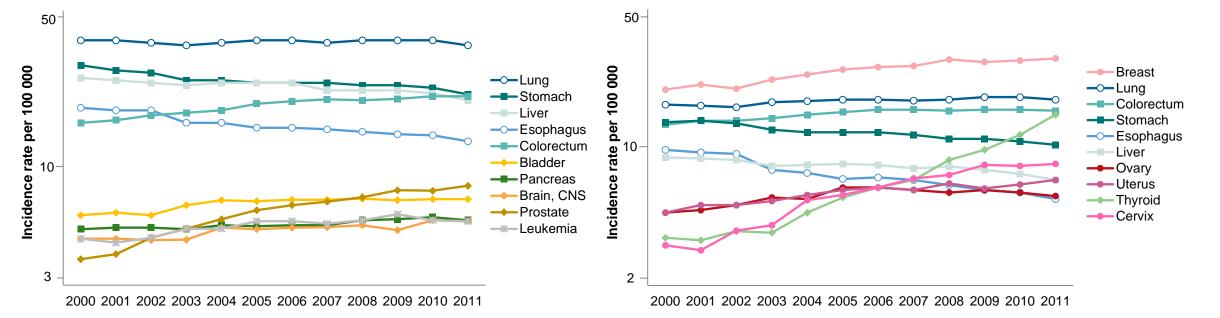
### Dr. Shun Lu, M.D., Ph.D.

Shanghai Chest Hospital, Shanghai Jiao Tong University (上海交通大学附属胸科医院)



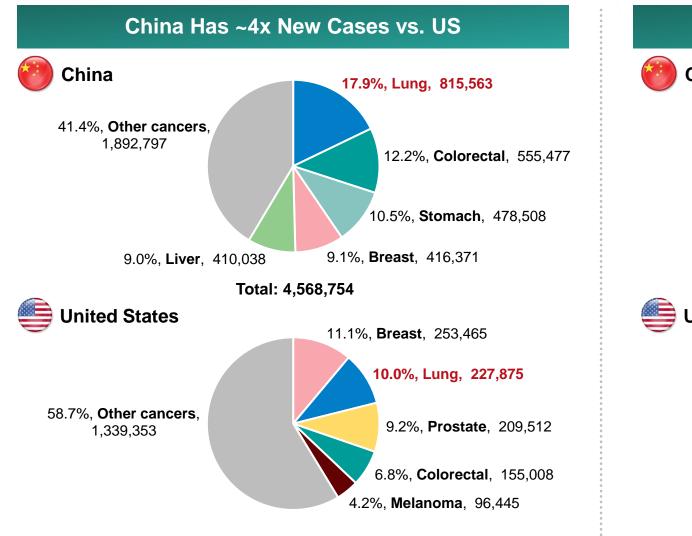
### Lung Cancer Is the Most Common Cancer Type in China

#### **Cancer Statistics in China, 2015**


Wanqing Chen, PhD, MD; Rongshou Zheng, MPH; Peter D. Baade, PhD; Siwei Zhang, BMedSc; Hongmei Zeng, PhD, MD; Freddie Bray, PhD; Ahmedin Jemal, DVM, PhD; Xue Qin Yu, PhD, MPH; Jie He, MD

#### Incidence Rates for Males in China (2000–2011)

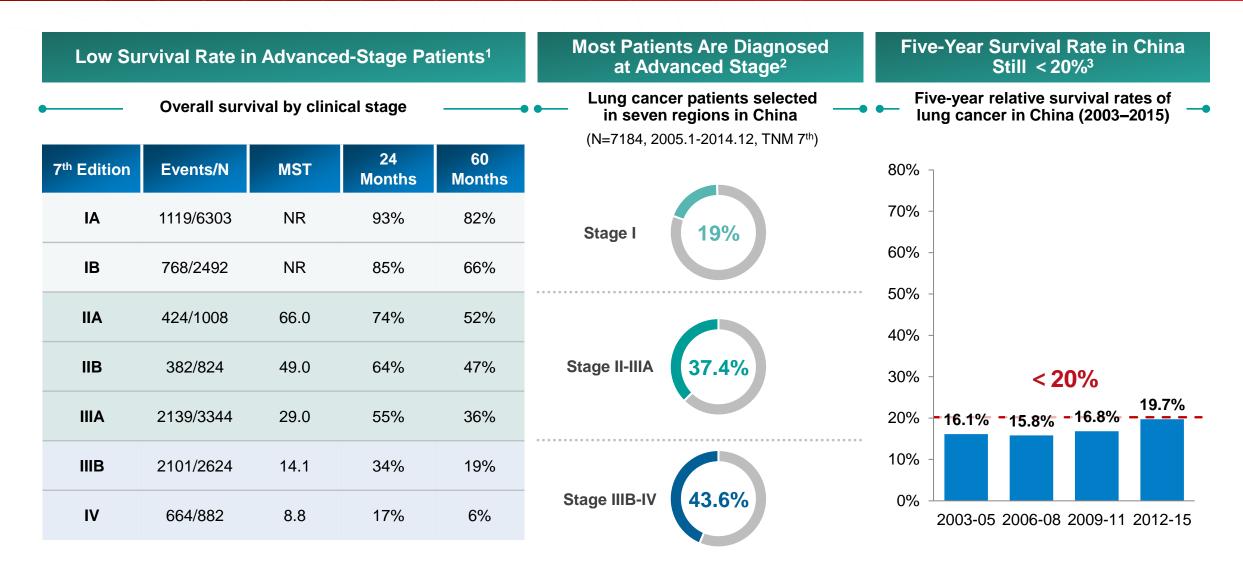
Trends in Incidence Rates (Age-Standardized to the Segi Standard Population) for Selected Cancers for Males: China, 2000 to 2011


#### Incidence Rates for Females in China (2000–2011)

Trends in Incidence Rates (Age-Standardized to the Segi Standard Population) for Selected Cancers for Females: China, 2000 to 2011



Abbreviation: CNS (central nervous system). Source: Wanqing Chen, et al. CA Cancer J Clin 2016 Mar-Apr;66(2):115-32.


# Lung Cancer Incidence and Mortality in China Are Higher Than in US



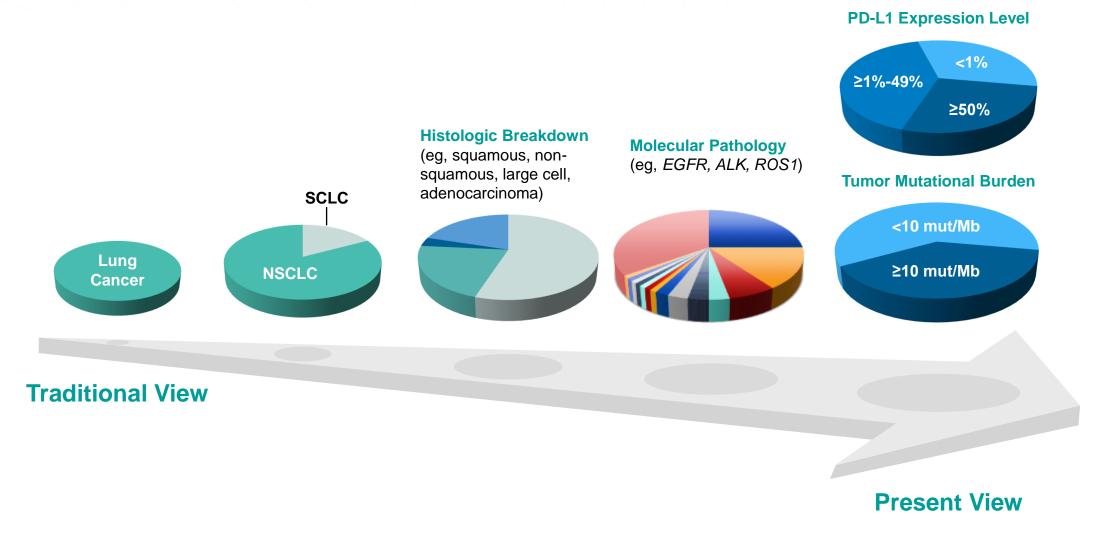
Mortality in China is 60% Higher than US



### Most Patients Are Diagnosed at Advanced Stage with Poor Prognosis Overall Survival Rate Has Not Significantly Improved Over Time





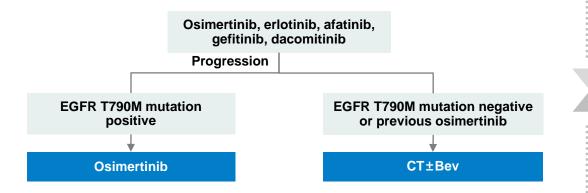

Δ



**NSCLC** is leading the search for precision medicines



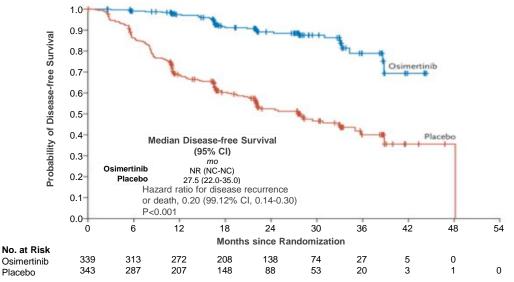
# **Evolution of Therapy in Lung Cancer Under Precision Medicine**




Source: WA Cooper, et al. Pathology. 2011;43:103; CJ Langer, et al. JCO. 2010;28:5311; J Galon, et al. Immunity. 2013;39:11; W Pao, et al. Lancet Oncol. 2011;12:175; G Krigsfeld, et al. AACR 2017. Abstr CT143. MD Hellmann, et al. NEJM. 2018;378:2093.



# Targeted Therapy Has Become Standard of Care for EGFR-Mutated NSCLC


#### EGFR Mutated Advanced NSCLC<sup>1,2</sup>



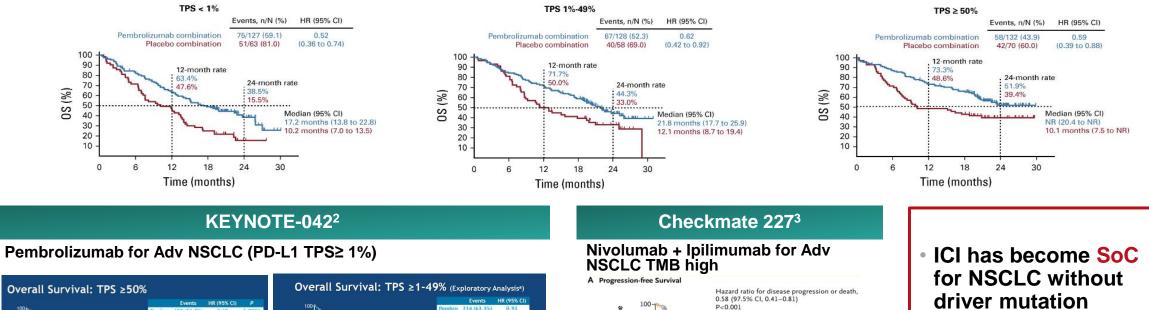
| Selected EGFR TKI Trials <sup>3</sup> |                            |             |                                                  |  |  |  |
|---------------------------------------|----------------------------|-------------|--------------------------------------------------|--|--|--|
| Year                                  | Generation                 | Study       | Treatment                                        |  |  |  |
| 2009                                  | 1 <sup>st</sup> generation | IPASS       | Gefitinib vs Chemo                               |  |  |  |
| 2011                                  | 1 <sup>st</sup> generation | OPTIMAL     | Erlotinib vs chemo                               |  |  |  |
| 2013                                  | 2 <sup>nd</sup> generation | LUX-Lung3   | Afatinib vs Chemo                                |  |  |  |
| 2017                                  | 2 <sup>nd</sup> generation | ARCHER 1050 | Dacomitinib vs<br>gefitinib                      |  |  |  |
| 2017                                  | 3 <sup>rd</sup> generation | AURA3       | Osimertinib vs<br>Chemo/T790M+                   |  |  |  |
| 2018                                  | 3 <sup>rd</sup> generation | FLAURA      | Osimertinib vs<br>1 <sup>st</sup> generation TKI |  |  |  |

#### Adjuvant Therapy (IB-IIIA) – ADAURA<sup>4</sup>

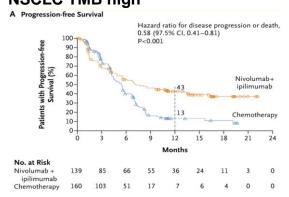




Clinical Trials Ongoing with Potential to Include (Neo)Adjuvant and Maintenance Treatment After Chemo/radiation in Stage III


| NeoADAURA     | LAURA         |
|---------------|---------------|
| (NCT04351555) | (NCT03521154) |

### Immune Checkpoint Inhibitors **Another Breakthrough for NSCLC Without Driver Mutations**


#### Selected Immune Checkpoint Inhibitor Clinical Studies

#### KEYNOTE-189<sup>1</sup>

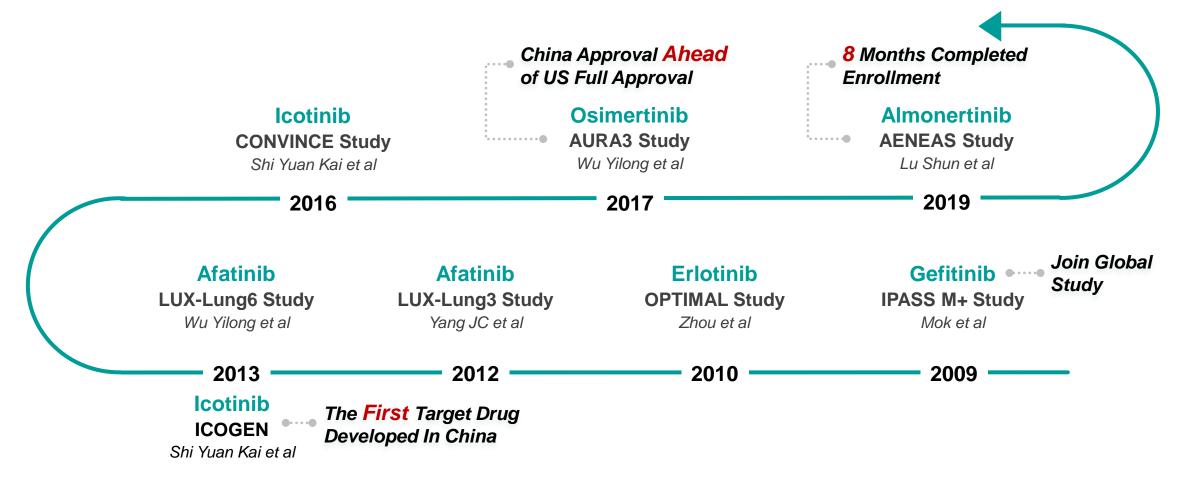
#### Pembrolizumab + CT for Adv NSCLC



Overall Survival: TPS ≥50% 100-90-80-214 (63.3%) 0.92 239 (70.9%) (0.77-1.11) 0.69 (0.56-0.85) 70-장 60-Median (95% CI) Median (95% CI) 8 50



\*Tumor Mutational Burden, TMB; Advanced, Adv; Chemotherapy, CT


- More biomarkers are being explored to identify appropriate patients



8

## **China Participated in Historic Transformation**

#### **Chinese Investigators Are More Experienced and Leading More Clinical Trials**



Source: (1) Mok, et al. NEJM 2009; (2) Zhou, et al. ESMO 2010; (3) Yang JC, et al. ASCO 2012; (4) Wu Yilong, et al. 2013 ASCO; (5) Shi Yuankai, et al. 2013 Lancet Oncology; (6) Shi Yuankai, et al. 2016 ASCO.

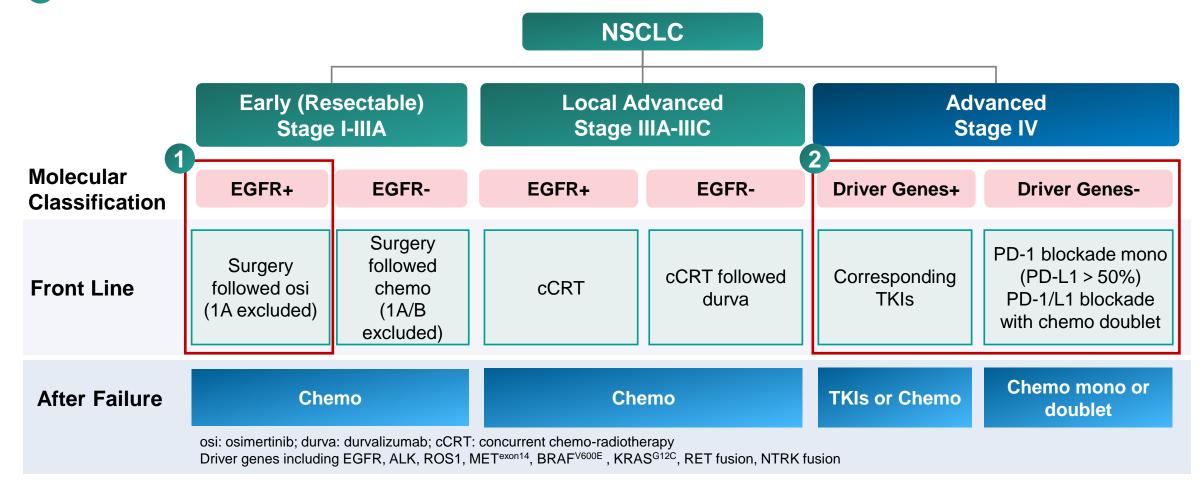


# **Continued Innovation in Drug Development Is Needed**

|                      | Immune Checkpoint Inhibitors Combined with Chemotherapy <sup>1-5</sup>                                          |                                     |                                                                                                     |                         |                                                                                                                                                                                                                                                                                       |                            |                                               |                                   |                                                      |                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|-----------------------------------|------------------------------------------------------|----------------------------------------|
| Study                |                                                                                                                 |                                     | IMpow                                                                                               | er 130                  | RATIONALE 304                                                                                                                                                                                                                                                                         |                            | CameL                                         |                                   | ORIENT 11                                            |                                        |
| Patient              |                                                                                                                 |                                     | N=679                                                                                               |                         | N=334                                                                                                                                                                                                                                                                                 |                            | N=419                                         |                                   | N=397                                                |                                        |
| Treatment            | Pembrolizumab+<br>CT                                                                                            | СТ                                  | Atezolizumab+<br>CT                                                                                 | СТ                      | Tislelizumab+<br>CT                                                                                                                                                                                                                                                                   | СТ                         | Camrelizumab+<br>CT                           | СТ                                | Sintilimab+<br>CT                                    | СТ                                     |
| PD-L1<br>Expression* | <1% ≥50%<br>31% ≥50%<br>32%<br>1-49%<br>37%                                                                     | <1% ≥50%<br>31% 34%<br>1-49%<br>35% | <1%<br>52%<br>1-49%<br>28%                                                                          | <1%<br>53% 1-49%<br>29% | <1%<br>43%<br>25%<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | <1%<br>43%<br>1-49%<br>23% | <1%<br>24%<br>14%<br>1-49%<br>62%             | <1%<br>34%<br>10%<br>1-49%<br>56% | <1%<br>32% ≥50%<br>40%<br>1-49%<br>28%               | <1%<br>33% ≥50%<br>46%<br>1-49%<br>21% |
| mPFS<br>(Month)      | 8.8                                                                                                             | 4.9                                 | 7.2 (7#)                                                                                            | 6.4 (5.5 <sup>#</sup> ) | 9.7 (8.5*)                                                                                                                                                                                                                                                                            | 7.6 (5.6#)                 | 11.3                                          | 8.3                               | 8.9                                                  | 5.0                                    |
| PFS HR<br>(95% CI)   | <b>0.52</b><br>(0.43–0.64, p <0.001)<br><b>0.53</b> ( <sup>#</sup> by Investigator)<br>(0.43-0.63, p < 0.00001) |                                     | <b>0.75</b><br>(0.63-0.91)<br><b>0.64</b> ( <sup>#</sup> by Investigator)<br>(0.54–0.77, p <0.0001) |                         | <b>0.645</b><br>(0.462, 0.902, p=0.0044)<br><b>0.561</b> ( <sup>#</sup> by Investigator)<br>(0.411-0.767, p=0.0001)                                                                                                                                                                   |                            | <b>0.61</b><br>(0.46-0.80, p=0.0002)          |                                   | <b>0.482</b><br>(0.362-0.643, p < 0.0001)            |                                        |
| OS HR<br>(95% CI)    | <b>0.49</b><br>(0.38–0.64, p <0.001)                                                                            |                                     | <b>0.79</b><br>(0·64–0·98, p=0.033)                                                                 |                         | <b>0.685</b> (Not mature) (0.422-1.110, p=0.0612)                                                                                                                                                                                                                                     |                            | <b>0.72</b> (Not mature) (0.52-1.01, p=0.027) |                                   | <b>0.609</b> (Not mature)<br>(0.400,0.926, p= 0.019) |                                        |
| ORR (%)              | 47.6                                                                                                            | 18.9                                | 49.2                                                                                                | 31.9                    | 57.4                                                                                                                                                                                                                                                                                  | 36.9                       | 60                                            | 39.1                              | 51.9                                                 | 29.8                                   |
| irAE (%)             | 22.7                                                                                                            | 11.9                                | -                                                                                                   | -                       | 25.7                                                                                                                                                                                                                                                                                  | NA                         | 77.6 (RCEP)                                   | -                                 | 43.2                                                 | 36.6                                   |

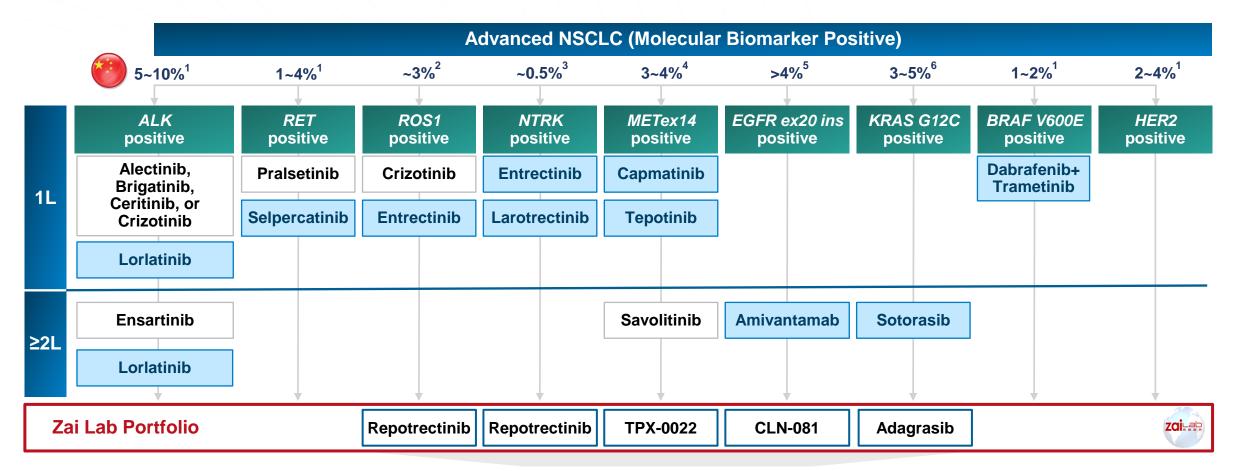
\* IMpower130: PD-L1 high (TC3 or IC3) correspond to PD-L1>50% group; PD-L1-low (TC1/2 or IC1/2) correspond to PD-L1 1-49% group; PD-L1 negative correspond to PD-L1<1% group. # assessment by investigator.

Abbreviations: CT (chemotherapy), irAE (immune-related adverse events), RCEP (reactive capillary endothelial proliferation).


Source: (1) L Gandhi, et al. N Engl J Med, 2018. 378(22): 2078-2092 (KEYNOTE189); (2) H West, et al. Lancet Oncol, 2019. 20(7): 924-937 (IMpower130); (3) Shun Lu, et al. ESMO 2020(RATIONALE304); (4) Caicun Zhou, et al. 2019 WCLC (Camel). (5) Li Zhang, et al. 2020 WCLC Presidential Symposium (ORIENT11).



10 (


### EGFR TKIs and ICIs Firmly Established as Standard of Care in Treating NSCLC in China

- 1 Third-generation EGFR TKIs have moved forward to early stage
- 2 Molecular pathology decides treatment regimen in advanced stage





# **Chinese Patients Need More Choices for Driver Mutations Beyond EGFR**



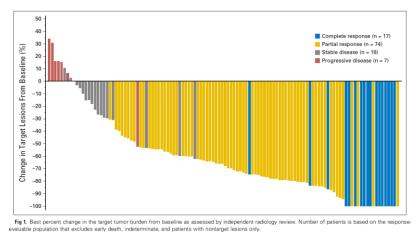
#### FDA approved, NMPA not approved

#### More Clinical Trials Needed to Establish Better Treatment Paradigms in Each of These Populations

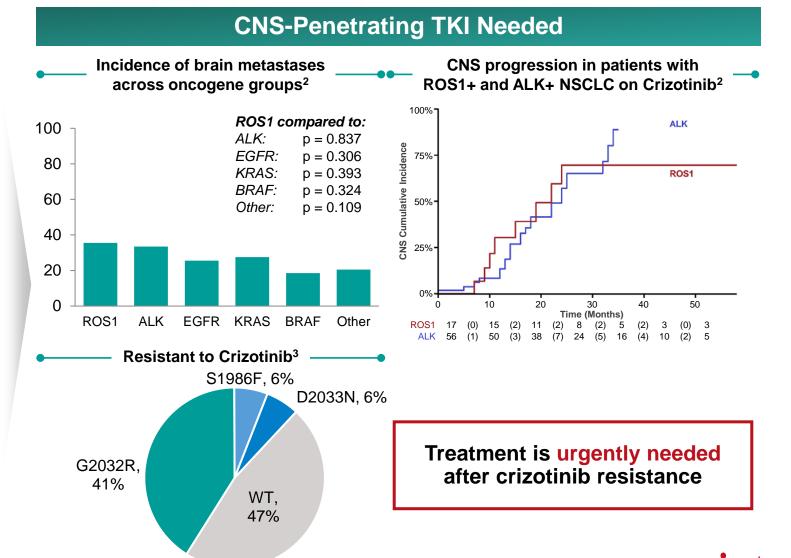
Source: FDA, NMPA, NCCN guideline 2021 V5.0., CSCO NSCLC guideline.

Note: (1) Chinese Journal of Pathology. 2021.50(6):583-591; (2) Clinical and the prognostic characteristics of lung adenocarcinoma patients with ROS1 fusion in comparison with other driver mutations in East Asian populations, 2014; and Frost & Sullivan; (3) NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls, 2020; (4) Turning Point Therapeutics presentation, December 2020; (5) Molecular epidemiology of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology - mainland China subset analysis of the PIONEER study, 2015; (6) KRAS G12C mutations in Asia: a landscape analysis of 11,951 Chinese tumor samples, 2020; Clinical characteristics and prognostic value of the KRAS G12C mutation in Chinese non-small cell lung cancer patients, 2020; The prevalence and concurrent pathogenic mutations of KRASG12C in Northeast Chinese non-small-cell lung cancer patients, 2021.



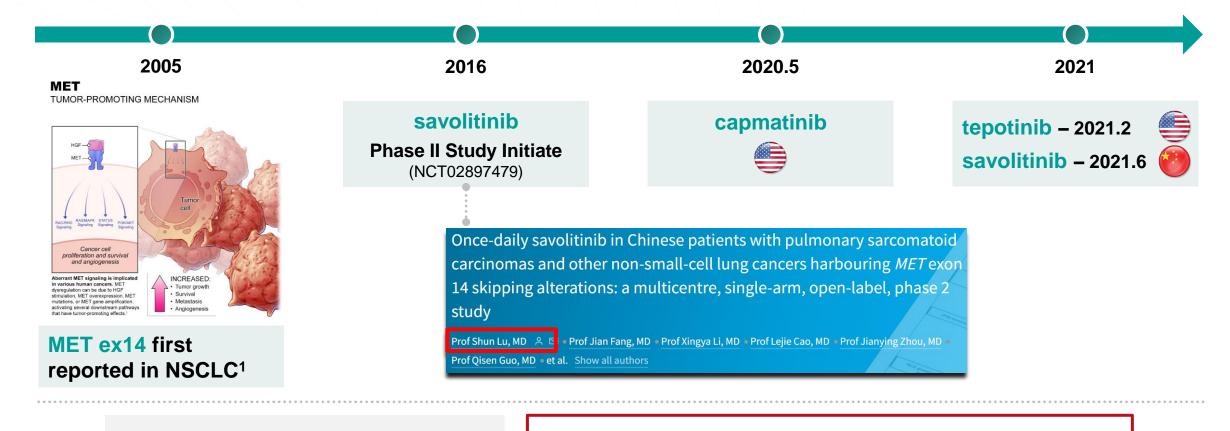

### Differentiated Drugs Are Needed ROS1 as Example

### **Journal** of Clinical Oncology<sup>®</sup>


An American Society of Clinical Oncology Journal

Phase II Study of Crizotinib in East Asian Patients With ROS1-Positive Advanced Non–Small-Cell Lung Cancer

Yi-Long Wu, James Chih-Hsin Yang, Dong-Wan Kim, Shun Lu, Jianying Zhou, Takashi Seto, Jin-Ji Yang, Noboru Yamamoto, Myung-Ju Ahn, Toshiaki Takahashi, Takeharu Yamanaka, Allison Kemner, Debasish Roychowdhury, Jolanda Paolini, Tiziana Usari, Keith D. Wilner, and Koichi Goto

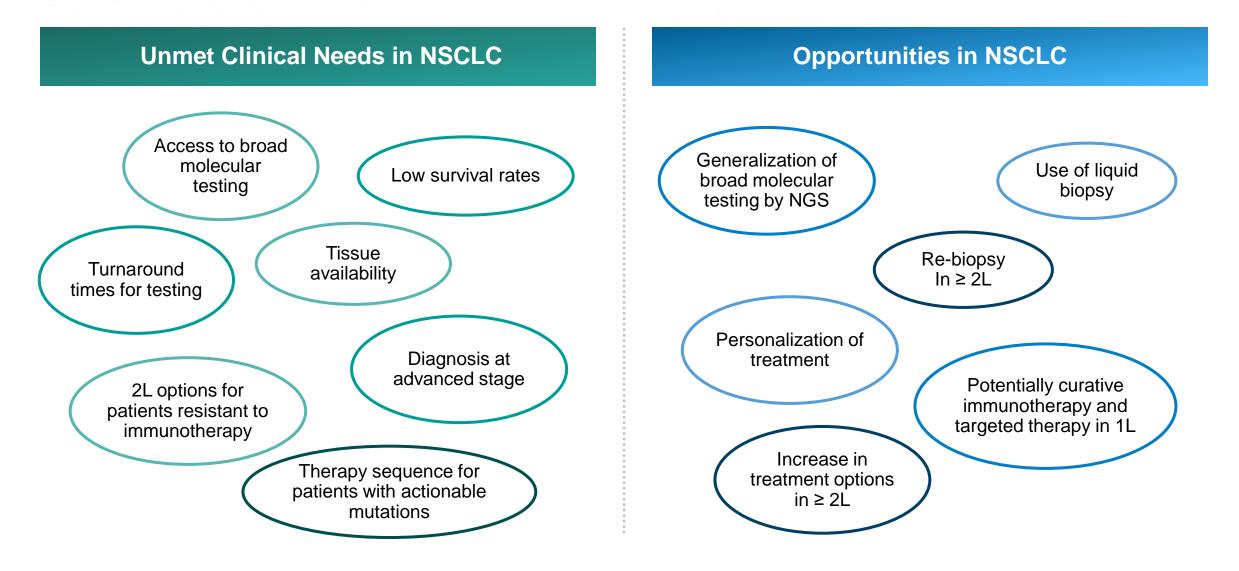



- ORR by IRR : 71.7% (95% CI, 63.0% to 79.3%)<sup>1</sup>
- Lack of intracranial efficacy
- Crizotinib approved in China



13 Source: (1) Yi-Long Wu et al. J Clin Oncol 36:1405-1411; (2) Patil T et al. JTO 2018; (3) Gainor JF et al. JCO Precis Oncol. 2017.

# Trial Experience Is Increasing Beyond EGFR Mutation *MET* ex14 as Example




#### **Experience Sharing**

- Deeply understand disease
- Team collaboration to find positive patients
- Communication with CDE

### Need more trials addressing treatment needs of mutations beyond EGFR

### NSCLC is Characterized by High Level of Unmet Clinical Needs Despite Recent Progress and Encouraging Prospects





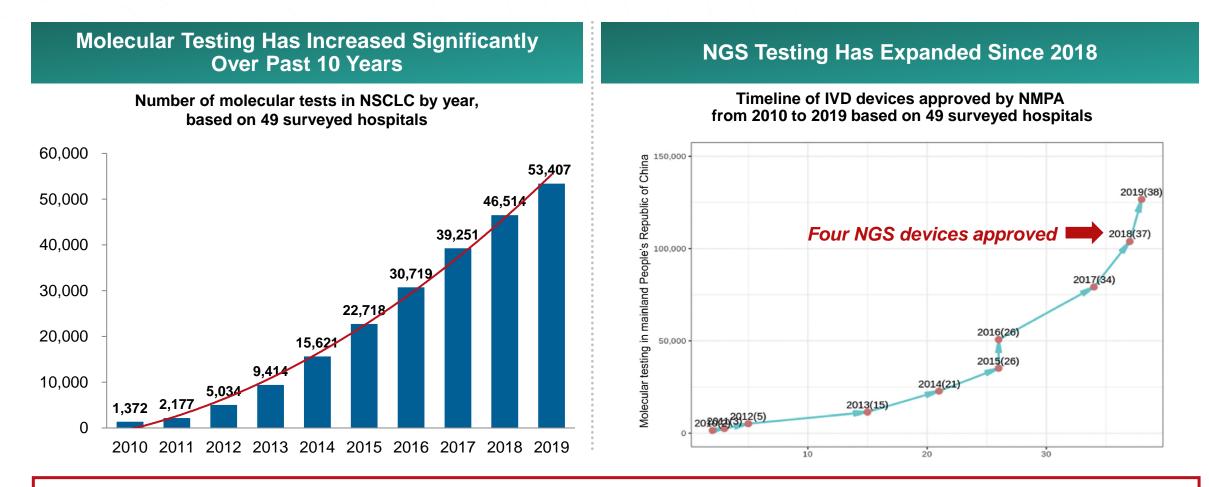











# **Challenge: Many Driver Mutations Still Not Being Tested in China**

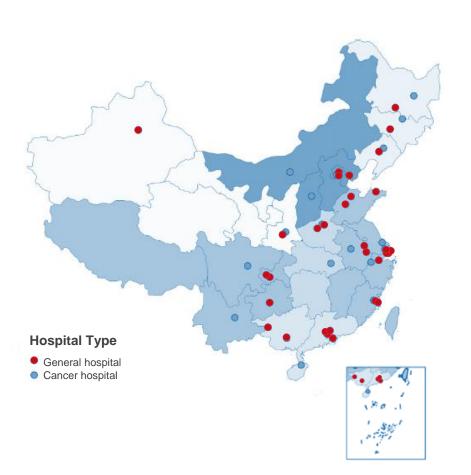
| Lung Cancer in Cl   | nina                                                                                               | NCCN Cancer Non-Small Cell Lung Cancer                                                                                                                                                                              |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mandatory           | Expansion                                                                                          | Mandatory                                                                                                                                                                                                           |  |  |  |
| EGFR<br>ALK<br>ROS1 | <ul> <li>MET</li> <li>BRAF V600E</li> <li>HER2</li> <li>RET</li> <li>NTRK</li> <li>KRAS</li> </ul> | <ul> <li>EGFR (eg, exon19 deletion or L858R)</li> <li>ALK</li> <li>ROS1</li> <li>MET ex14 Skipping</li> <li>EGFR exon20 Insertion</li> <li>KRAS G12C</li> <li>BRAF V600E</li> <li>NTRK1/2/3</li> <li>RET</li> </ul> |  |  |  |

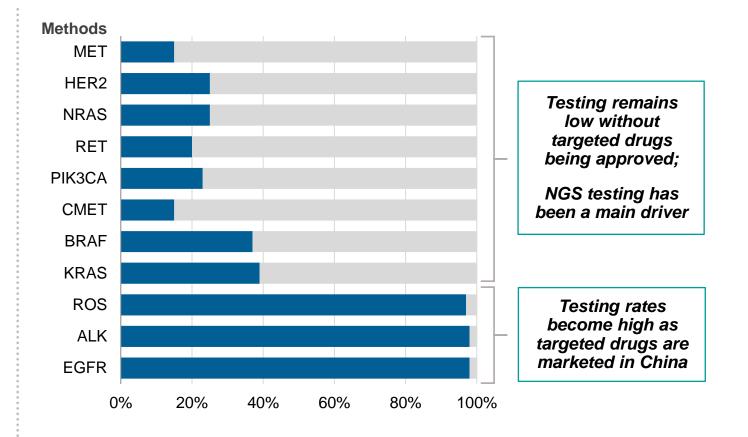
- Some patients may not receive recommended expansion testing
- Testing order may miss some mutations beyond EGFR and ALK



# **Opportunity: Continued Growth in Biomarker Testing in China**

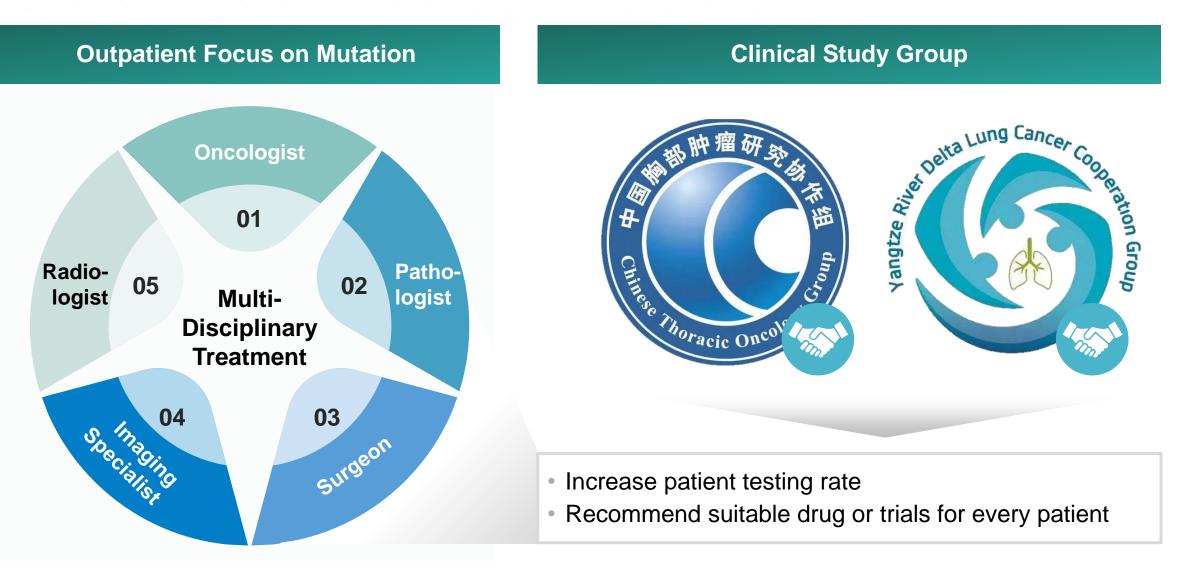



#### Increased use of NGS panels can aid physicians in selecting therapies, especially with rapid development of targeted agents beyond EGFR TKIs


Abbreviation: NMPA (National Medical Products Administration), IVD (In vitro diagnostic device). Source: W Li, et al. JTO Clinical and Research Reports Vol. 2 No. 4: 100163.

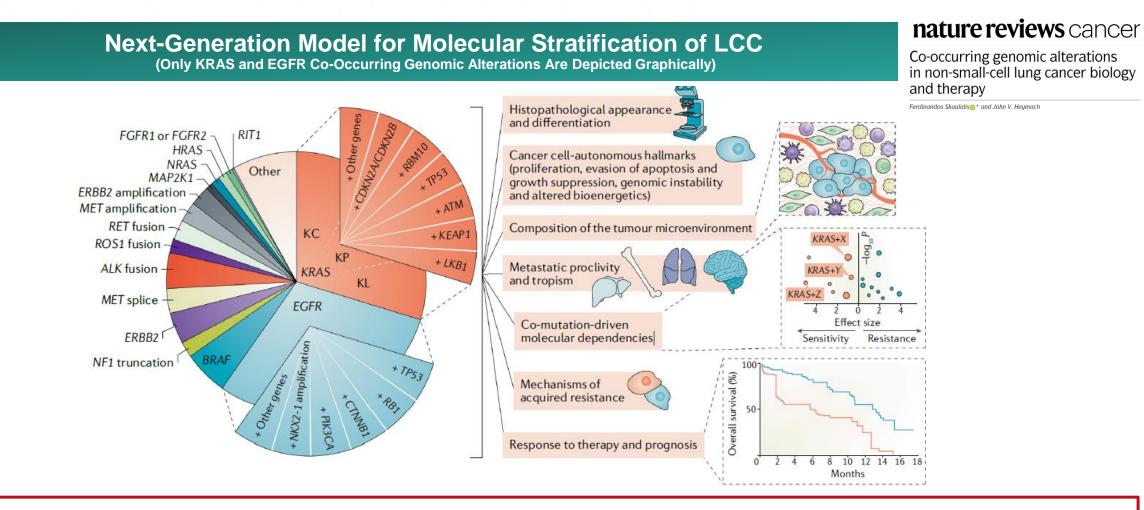


### Testing Is Expected to Increase in China with More Targeted Therapies Being Approved and Use of NGS


#### **Proportion of Molecular Testing in 49 Hospitals (2017-2019)**





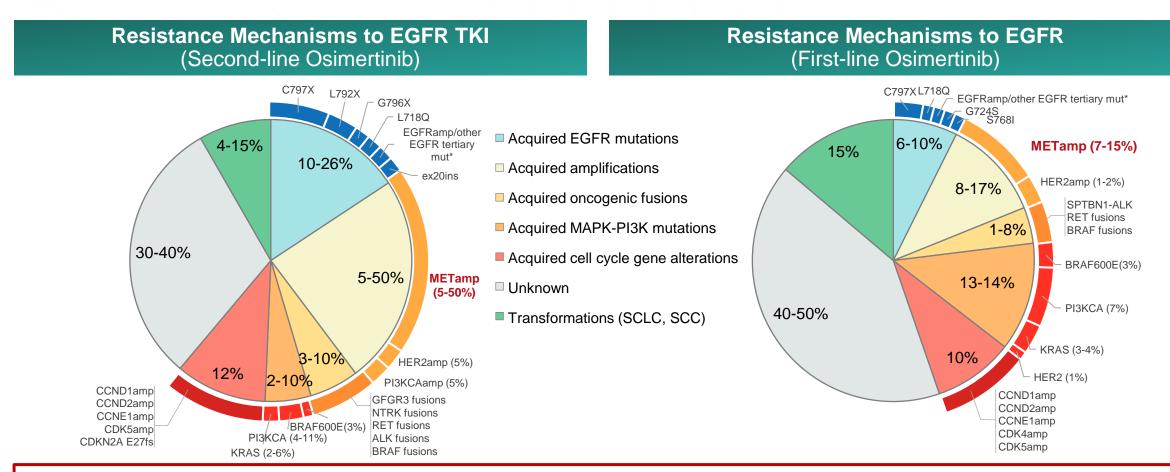



## **More Attention Needed for Patients With Other Mutations**





# In the Future, We May Need Highly Personalized Therapeutic Approaches




Moving beyond a single gene, we need more precise testing and drugs for different patient subgroups

Abbreviation: LCC (lung adenocarcinoma). Source: F Skoulidis, et al. Nature Reviews Cancer volume 19, pages495–509 (2019).



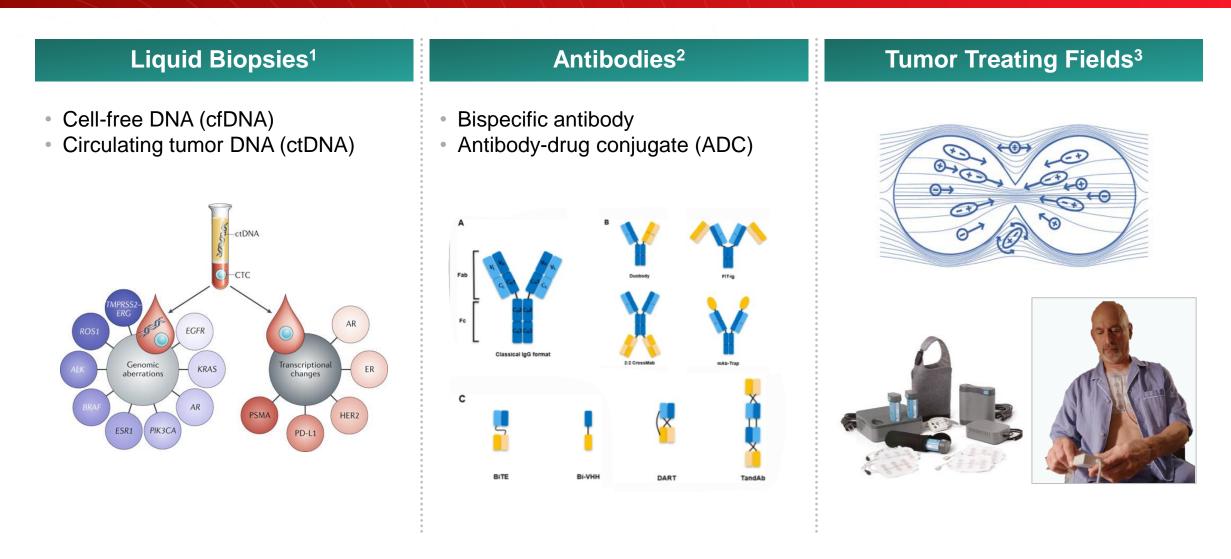
### Drug Resistance Remains Key Issue EGFR Resistance as Example



#### Future directions for resistant mechanism

- Retesting is important
- Different ways to resolve drug resistance, such as combination with MET inhibitor, next-generation drugs

# Ongoing Trials Aim to Resolve MET Amplification Resistance EGFR Resistance as Example


| Study                                                         | Phase | Patients                                                                                        | Ν                   | Drug                    | ORR (%)                                 | PFS (months)                            | DoR<br>(months) |  |  |
|---------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|---------------------|-------------------------|-----------------------------------------|-----------------------------------------|-----------------|--|--|
| Non-selective MET inhibitor for treating MET Amp solid tumors |       |                                                                                                 |                     |                         |                                         |                                         |                 |  |  |
| NCT03993873                                                   | I     | <i>MET</i> mutation<br>including MET Amp<br>Solid Tumor                                         | 120                 | TPX-0022                | N/A                                     | N/A                                     | N/A             |  |  |
| EGFR-TKI+ME                                                   | Т-ТКІ |                                                                                                 |                     |                         |                                         |                                         |                 |  |  |
| TATTON <sup>1</sup>                                           | lb    | <ul> <li>FISH (MET GCN≥5 or<br/>MET/CEP7≥2)</li> <li>NGS (MET GCN≥5)</li> <li>IHC 3+</li> </ul> | 344                 | Savolitinib+Osimertinib | 62-67%                                  | 9.0-11.1                                | 9.7-11.0        |  |  |
| INSIGHT <sup>2</sup>                                          | II    | <ul> <li>MET GCN≥5 or<br/>MET/CEP7≥2</li> <li>MET IHC 3+</li> </ul>                             | 18 (lb);<br>31 (ll) | Tepotinib+Gefitinib     | <i>MET Amp</i> : 67%<br>MET IHC 3+: 68% | <i>MET</i> Amp: 16.6<br>MET IHC 3+: 8.3 | 19.8/8.7        |  |  |
| NCT01610336 <sup>3</sup>                                      | II    | <ul><li>MET GCN≥6</li><li>MET IHC 3+</li></ul>                                                  | 100                 | Capmatinib+Gefitinib    | MET GCN≥6: 47%<br>MET IHC 3+: 32%       | MET GCN≥6: 5.49<br>MET IHC 3+: 5.45     | 5.6             |  |  |
| INSIGHT <sup>2</sup>                                          | II    | <ul> <li>MET GCN≥5 or<br/>MET/CEP7≥2</li> <li>MET IHC 3+</li> </ul>                             | 18 (lb);<br>31 (ll) | Chemotherapy            | <i>MET Amp</i> : 43%<br>MET IHC 3+: 33% | <i>MET</i> Amp: 4.2<br>MET IHC 3+: 4.4  | 2.8             |  |  |
| AcSé⁴                                                         | II    | ● MET GCN≥6                                                                                     | 25                  | Crizotinib              | 32                                      | 3.2                                     | N/A             |  |  |

Abbreviations: FISH (Fluorescence in situ hybridization), CEP7 (Centromere 7), GCN (Gene Copy Number), IHC (Immunohistochemistry).

Source: (1) Han JY,et al. 2020WCLC.FP14.03; (2) Wu YL, et al. Lancet Respir Med.2020 Nov;8(11):1132-1143; (3) Wu YL,et al.J Clin Oncol.2018;36(31):3101-3109; (4) Moro-Sibilot D,et al. Ann Oncol. 2019 Dec 1;30(12):1985-1991.



### **New Advances from Diagnosis to Treatment Options**





# Summary

- Lung cancer is most common cancer type and leading cause of cancer death in China, with fiveyear survival rate less than 20%
- NSCLC leads precision medicine for cancer treatment
  - ✓ Target therapy has become SoC for EGFR-mutated NSCLC
  - Immune checkpoint inhibitors have become SoC for NSCLC without driver mutations, and more biomarkers are being explored for select patients
  - China witnessed and participated In historic transformation
- Significant unmet needs exist in China for NSCLC patients with driver mutations beyond EGFR
  - Beyond EGFR TKIs, access to other targeted drugs in China is low
- Molecular testing is booming, but increased testing is mainly driven by EGFR and ALK; testing is
  expected to increase in China as more targeted therapies are approved and with increased use of
  NGS
- Drug resistance is still a barrier in clinic; we should understand more about resistant mechanisms and explore different methods to resolve drug resistance
- New technologies will provide additional options and potential for improved survival

