Unmet Needs in GI Cancers

Dr. Tianshu Liu, M.D., Ph.D.

Zhongshan Hospital, Fudan University (复旦大学附属中山医院)

September 22, 2021

China Has World's Highest Prevalence of GI Malignancies with Extremely Poor Prognosis

- 3rd largest cancer in China, in terms of both incidence rate and mortality rate
 - Unhealthy dietary habits
 - High incidence of H. pylori infection
 - Smoking
- Lower rate of early diagnosis in China vs. Japan
- Lower rate of gastroscope in China vs. Japan
- Huge disease burden of advanced gastric cancer patients in China

60–70% of Patients Diagnosed at Advanced Stage with Poor Prognosis¹

For advanced/metastatic gastric cancer:

- **5%~20%** 5-year survival rate
- mOS of approx. one year

Compared to US, China Has Limited Effective Therapies Approved in Metastatic Gastric Cancer

 For MSI-high/PD-L1 CPS≥1, GC/GEJ patients: pembrolizumab is recommended in recurrent setting in China, same as US; for HER2-, trastuzumab and pembrolizumab is III level recommendation in 1L in CSCO guideline

Precision Medicine in Gastric Cancer

Before

- Prior to 2012, chemotherapy was only treatment for advanced gastric cancer
- For the recent decade, HER2 is only target for gastric cancer

5

Molecular Pathology

Genomic Alterations as Therapeutic Targets¹

Gene	Alteration	Prevalence in GC
ERRB2 (HER2)	Amplification/Overexpression	10%–20%
VEGFR2	Overexpression	~50%
VEGF	Overexpression	40%–50%
EGFR	Amplification/Overexpression	6%–27%
MET	Amplification/Overexpression	5%–40%
FGFR2	Amplification/Overexpression	4%–12%
ATM	Loss (Protein)	60%
PIK3CA	Mutation	5%–10%
CDK4/6	Amplification	6%–15%
PD-L1/L2	Amplification/Overexpression	15% of EBV-positive GC
MSI (Microsatellite Instability)	Mutation	15%–20%
ARID1A	Mutation	8%–10%

Zai Lab's current gastric cancer portfolio

Targeting FcγRIIIA (CD16A) Is Potential Strategy to Improve Treatment Outcome of HER2+ Cancer Patients

PFS Analysis by CD16A Genotype¹

- Retrospective study examined 42 Her2-positive patients receiving fluorouracil and platinum-based chemotherapy and trastuzumab; FcγRIIIA (CD16A) polymorphisms were assessed
- Trastuzumab showed better treatment outcome in FcγRIIIA (CD16A)158V/V patients, while in majority of 158V/F or F/F patients, treatment outcome of trastuzumab was poor

ADCC Effect of Trastuzumab Low in 158V/F or F/F^{2,3,4}

- The ADCC effect is mediated by FcyRIIIA (CD16A)
- Patients with FcγRIIIA (CD16A) 158V/V genotypes have high binding affinity between Fc portion of antibody and FcγR on immunologic effector cells and lead to high ADCC effect of trastuzumab
- Increased FcyRIIIA (CD16A) can enhance ADCC effect and can potentially increase efficacy of cancer cell destruction in HER2+ gastric cancer

Tumor Type	MBC	MBC	BC	MGC
V/V	20.7%	13.6%	11.9%	17.2%
V/F	48.1%	48.4%	41.6%	46.4%
F/F	31.2%	37.9%	46.5%	36.4%

V/F and F/F patients account for majority in different tumor types

High

- Binding affinity
- ADCC effect of trastuzumab

Low

Meta-Analysis Indicated Patients with FGFR2-Overexpressed Gastric Cancer Showed Significantly Worse Survival Than Those with FGFR2-Low Tumors (HR = 1.40, 95% CI: 1.25-1.58, p <0.00001)

Study or Subgroup	Log (Hazard Ratio)	SE	% Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% Cl
Hattori (1996)	0.5481	0.3851	2.4%	1.73 (0.81, 3.68)	
Matsunobu (2006)	-0.1393	0.2947	4.1%	0.87 (0.49, 1.55)	▶ ──
Toyokawa (2009)	0.6523	0.1925	9.6%	1.92 (1.32, 2.80)	▶ ── ₩
Murase (2014)	0.2746	0.2705	4.9%	1.32 (0.77, 2.24)	▶ ── →
Nagatsuma (2015)	0.3920	0.1677	12.6%	1.48 (1.07, 2.06)	F
Han (2015)	0.6254	0.3700	2.6%	1.87 (0.91, 3.86)	F
Ahn (2016)	0.6076	0.2928	4.1%	1.84 (1.03, 3.26)	F
Jia (2016)	0.6653	0.2393	6.2%	1.95 (1.22, 3.11)	⊢ i
Tokunaga (2016)	0.2311	0.0857	48.4%	1.26 (1.07, 1.49)	F <mark>B</mark> -1
Hosoda (2018)	0.2199	0.2649	5.1%	1.25 (0.74, 2.09)	⊢
Total (95% CI)			100.0%	1.40 (1.25, 1.58)	I I I I I I I I I I I
Heterogeneity: CHI ²	= 10.82, df = 9 (P = 0.2	29); l ² = 17%		(0.1 0.2 0.5 1 2 5 10

Test for overall effect: Z = 5.68 (P < 0.00001)

FGFR2 Expression (-) FGFR2 Expression (+)

c-Met Status Is Important Factor Affecting Prognosis of Gastric Cancer

Meta-Analysis of HRs Indicated Significantly Poorer OS in Patients with High c-Met Expression (Average HR=2.112, 95% CI: 1.622-2.748)

Forest Plot Showing Meta-Analysis of Hazard Ratio Estimates for Overall Survival

Study ID	% Weight	Hazard Ratio 95% Cl	Hazard Ratio 95% Cl
Toiyama (2011)	8.28%	2.99 (1.67, 5.35)	
Catenacci (2011)	3.25%	4.70 (1.31, 16.90)	· · · · · · · · · · · · · · · · · · ·
Catenacci (2011)	11.01%	1.34 (0.93, 1.92)	
Lee (2012)	6.33%	2.27 (1.05, 4.93)	▶ ───
Li (2012)	4.88%	0.58 (0.22, 1.51)	F
Taniguchi (1998)	5.02%	1.90 (0.74, 4.85)	▶ •
Tsugawa (1998)	4.20%	9.30 (3.18, 27.25)	· · · · · · · · · · · · · · · · · · ·
Nakajima (1999)	4.00%	1.62 (0.53, 4.90)	
Huang (2001)	1.50%	9.30 (1.22, 70.81)	· · · · · · · · · · · · · · · · · · ·
KUBICKA (2002)	5.33%	3.77 (1.54, 9.24)	► • • • • • • • • • • • • • • • • • • •
Han (2005)	2.11%	0.65 (0.05, 1.49)	
DREBBER (2008)	7.79%	1.90 (1.00, 3.50)	• • • • • • • • • • • • • • • • • • •
Lee (2011)	10.58%	1.60 (1.08, 2.38)	
Zhao (2011)	8.71%	1.88 (1.09, 3.24)	↓ ↓
Graziano (2011)	8.48%	2.91 (1.65, 5.11)	
Shi (2012)	8.52%	2.10 (1.20, 3.69)	· · · · · · · · · · · · · · · · · · ·
Overall (l ² = 52.4%, p = 0.007)	100.00%	2.11 (1.62, 2.75)	
			0.1 0.2 0.5 1 2 5 10 20 30 40

Low c-Met Has Worse Survival

High c-Met Has Worse Survival

While age is major factor in incidence of CRC, risk factors may also include dietary habits (low-fiber diets, diets rich in red and processed meat, excessive alcohol intake), smoking, less physical activity, and hereditary factors

Limited Effective Therapies Available for Metastatic CRC in China

Targeted Therapies Available for Metastatic CRC in US and China

	Approved by FDA	Approved by NMPA
cetuximab		\checkmark
panitumumab		
bevacizumab		
regorafenib		
fruquitinib		
ziv-aflibercept		
pembrolizumab		
nivolumab		
ipilimumab		
encorafenib		

No Effective Treatment for KRAS-Mutant Patients Poor Prognosis in KRAS-Mutant CRC

- China has world's highest incidence and mortality rate of GI cancers, with poor prognosis
- For gastric cancer, 3rd largest cancer in China by incidence, treatment options are still limited despite recent progress of PD-1s approved in first-line setting
 - FC optimized mAb can be potential choice for HER2+ gastric cancer
 - FGFR2b accounts for 30% of HER2- patients but with poor prognosis
 - Patients with high c-MET indicate poorer OS
- The incidence and mortality of CRC is increasing in China, with very limited treatment options
 - KRAS G12C with poor prognosis

